

AEM (<u>Acrylic Ethylene Copolymer</u>) material offers excellent resistance to petroleum fuels, oils, heat, ozone, and weathering, with good low-temperature properties and dynamic characteristics.

Its main drawbacks are moderate water and humidity resistance, inferiority to mineral oils in resistance compared to some ACM (polyacrylate rubber) grades, and a higher cost than NBR, CR, and EPDM.

AEM is commonly used in automotive applications like hoses, seals, and turbocharger components.

Available hardness range (Shore A)	45 - 90
Upper continuous service temp.	175°C
Min. temp. for sealing applications	-40°C
Minimum non-brittle temp.	-60°C
Tensile strength (up to)	20 MPa
Elongation at break (up to)	350%

Advantages

- Excellent Heat and Ozone Resistance: AEM exhibits strong resistance to heat, ozone, and weathering, outperforming nitrile rubber (NBR) in this regard.
- Good Oil and Fluid Resistance: It provides excellent resistance to petroleum-based fuels and oils, as well as greases and power steering/transmission fluids, even those with aggressive additives.
- **Good Low-Temperature Properties:**The presence of ethylene in the polymer structure contributes to good low-temperature performance.
- **Good Dynamic Properties:**AEM offers good dynamic properties, vibration damping, and abrasion resistance across a wide temperature range.
- Strong Mechanical Properties: AEM generally has greater strength and tear strength than ACM.

Disadvantages

- **Moderate Water Resistance:**AEM has moderate resistance to water and humidity, making it less suitable for applications involving prolonged exposure to these conditions.
- Inferior Mineral Oil Resistance (vs. ACM): While good with petroleum, its resistance to mineral oils is generally worse than some grades of ACM rubber.
- Higher Cost: AEM is less cost-effective than more common elastomers like nitrile rubber (NBR), chloroprene (CR), and EPDM.
- **Degrades Faster than Some Alternatives:**It degrades more quickly than some other specialty elastomers, such as fluorocarbons (Viton®/FKM), in hostile engine environments.

Common Applications

- · Automotive hoses and seals
- Engine and transmission seals
- Turbocharger components
- Cylinder head cover gasket

For assistance in identifying the appropriate polymer or material, or to develop and formulate a polyacrylate / acrylic rubber compound to meet your specific application and performance requirements, please contact ILGA S.R.L at e-mail: ilga@ilgagomma.com or phone: +39 0456336521 / 0456336514.

Ilga Srl Company, makes no expressed or implied warranty as to any qualities, attributes, or characteristics of any polymer or material. This information is provided for reference only.